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In recent years, correntropy and its applications in machine learning have been 
drawing continuous attention owing to its merits in dealing with non-Gaussian 
noise and outliers. However, theoretical understanding of correntropy, especially 
in the learning theory context, is still limited. In this study, we investigate 
correntropy based regression in the presence of non-Gaussian noise or outliers within 
the statistical learning framework. Motivated by the practical way of generating 
non-Gaussian noise or outliers, we introduce mixture of symmetric stable noise, 
which include Gaussian noise, Cauchy noise, and their mixture as special cases, 
to model non-Gaussian noise or outliers. We demonstrate that under the mixture 
of symmetric stable noise assumption, correntropy based regression can learn the 
conditional mean function or the conditional median function well without resorting 
to the finite-variance or even the finite first-order moment condition on the noise. 
In particular, for the above two cases, we establish asymptotic optimal learning 
rates for correntropy based regression estimators that are asymptotically of type 
O(n−1). These results justify the effectiveness of the correntropy based regression 
estimators in dealing with outliers as well as non-Gaussian noise. We believe that 
the present study makes a step forward towards understanding correntropy based 
regression from a statistical learning viewpoint, and may also shed some light on 
robust statistical learning for regression.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Within the information-theoretic learning framework developed in [44], correntropy was proposed in [48,
36] and serves as a similarity measure between two random variables. Given two scalar random variables U, 
V, the correntropy Vσ between U and V is defined as Vσ(U, V ) = EKσ(U, V ) with Kσ a Gaussian kernel given 
by Kσ(u, v) = exp

{
−(u − v)2/σ2}

, the scale parameter σ > 0, and (u, v) a realization of (U, V ). It is noticed 
in [36] that the correntropy Vσ(U, V ) can induce a new metric between U and V . It is argued in [36,44] that 
this new metric could be a better option in measuring the distance between U and V than the Euclidean 
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metric when the random variable defined by the residual U − V admits a non-Gaussian distribution which 
is frequently encountered in applications. During the past several years, the merits of correntropy have 
been verifying by numerous real-world applications across various fields, e.g., signal processing [36,8,9,7,68], 
image processing [24,26,25,22,61,62,67,63], time series forecasting [4,5,40], and many other machine learning 
tasks such as regression, classification, and clustering [60,52,66]. Noticing that most of the above mentioned 
problems can be interpreted from a regression viewpoint, recently some understanding towards correntropy 
based regression in statistical learning has been conducted in [18] and [17], to which the present study is 
closely related. We, therefore, first revisit the conclusions on correntropy based regression drawn in [18] and 
[17].

1.1. Formulating correntropy based regression

We start with the following frequently assumed data-generating model in nonparametric regression

Y = f�(X) + ε, (1)

where X is the independent variable that takes values in a compact metric space X ⊂ Rd, Y the dependent 
variable that takes value in Y = R, and ε the noise variable. We assume that E(ε|X) = 0 if it exists, 
otherwise, we assume that median(ε|X) = 0. In regression problems, it is typical that we can only access a 
set of i.i.d. observations z = {(xi, yi)}n

i=1 generated by (1). Our purpose in regression is to infer the unknown 
truth f� while only referring to these observations.

The idea of correntropy based regression is to select the hypothesis from a hypothesis space that maximizes 
the empirical correntropy estimator between {yi}n

i=1 and {f(xi)}n
i=1 for any f : X → R, which we term as 

the Maximum Correntropy Criterion based Regression (MCCR) [18]. Recall that the following correntropy 
induced loss �σ : R → [0, +∞) is defined in [18]:

�σ(t) = σ2
(

1 − e− t2
σ2

)
, t ∈ R, (2)

where σ > 0 is a tuning parameter. MCCR can be formulated into the following empirical risk minimization 
scheme

fz := arg min
f∈H

1
n

n∑
i=1

�σ(yi − f(xi)), (3)

where H is a hypothesis space that is assumed to be a compact subset of C(X ).

1.2. MCCR in statistical learning

As mentioned above, in the literature, correntropy and its applications in various fields have been investi-
gated. However, in the statistical learning context, theoretical understanding of correntropy based regression 
estimators is still limited. Unlike commonly employed error metric in regression problems, the error metric 
induced by correntropy is non-convex and involves a scale parameter σ, which complicate the analysis. 
Recently, [18] investigated correntropy based regression when the scale parameter σ := σ(n) goes large in 
correspondence to the sample size n, which was inspired by the studies in [27,16] on empirical minimum 
error entropy minimization algorithms. When the scale parameter σ(n) tends to zero, [17] made some efforts 
in order to understand correntropy in regression problems and assess the performance of the correntropy 
based regression estimators from a statistical learning viewpoint. The main concerns in [18] and [17] are the 
learning performance of fz when the sample size n goes to infinity, where different scenarios of the noise 
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variable ε and the choices of the σ values were considered. Briefly, the following conclusions were drawn in 
the above-mentioned two studies:

• By relating the scale parameter σ to the sample size n (i.e., σ := σ(n)) and assuming that the noise 
variable ε is zero-mean, with a diverging and properly chosen σ value, fz can approximate the conditional 
mean function f� robustly. Convergence rates were established in the absence of light-tailed assumptions, 
which justifies the robustness of fz. Moreover, the scale parameter σ, in this case, plays a trade-off role 
between robustness and the approximation ability of the estimator fz.

• By relating the scale parameter σ to the sample size n and assuming a unique zero global mode of 
the noise ε, with a tending-to-zero and properly chosen σ value, fz approaches the conditional mode 
function f�. Note that the unique zero global mode assumption on ε allows asymmetric or heavy-tailed 
noise, which again explains the robustness of the MCCR estimator fz in this case.

• With a properly chosen scale parameter σ, the correntropy based regression estimator fz is shown to 
be equivalent to least squares regression estimator in the presence of symmetric and bounded noise. 
In this case, the equivalence is claimed in the following two senses: first, similar as that of the least 
squares regression estimator under the same noise condition, the population version of fz is exactly the 
conditional mean function f�. Second, the convergence rates of fz to the conditional mean function are 
comparable to that of least squares regression estimators.

Some merits of MCCR can be observed from the above statements. For example, MCCR can learn f� well 
in the absence of light-tailed noise assumptions where least squares regression estimators are not capable. 
On the other hand, it also performs comparable with least squares regression estimators in the presence of 
bounded and symmetric noise where the latter one achieves its optimal performance. We refer to Section 6
in [17] for a general picture of existing understanding on correntropy based regression in statistical learning.

1.3. Motivation and contribution

The prominent advantages of MCCR estimator lie in its resistance ability to heavy-tailed noise and 
outliers. As stated above, the conducted theoretical assessments on MCCR estimators in [18] and [17]
justify its superior performance in dealing with heavy-tailed noise. However, several fundamental problems 
related to MCCR estimators in statistical learning still remain unclear. For instance:

Problem I: Learning performance of MCCR in the presence of Gaussian noise. When Gaussian noise is 
present, least squares regression estimators are known to achieve their optimal performance and optimal 
learning rates of type O(n−1) have been established in the statistical learning literature, see e.g., [59]
and [19]. Under the same noise assumption, asymptotic learning rates of type O(n−2/3) can be deduced 
by following the work in [18], which are not comparable with that of least squares regression estimators. 
Notice that the correntropy induced loss �σ is Lipschitz continuous and bounded on R, and the fact that �σ

approximates the least squares loss when σ is large enough. It is natural to conjecture that optimal learning 
rates of MCCR estimators may be also achievable as least squares regression estimators in the presence of 
Gaussian noise.

Problem II: Learning performance of MCCR with heavy-tailed noise. In the presence of heavy-tailed noise 
with finite variance, from [18] we know that asymptotic learning rates of type O(n−2/3) for MCCR can 
be established under moment assumptions. If the heavy-tailed noise has infinite variance or even infinite 
first-order moment condition (such as Cauchy noise), asymptotic learning rates of type O(n−2/5) were 
established in [17] under mild assumptions. However, both of the above two types of learning rates are far 
from the type O(n−1), which are regarded as optimal in statistical learning.
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Problem III: Understanding MCCR in the presence of outliers. When outliers are presented, how MCCR 
estimators learn the unknown truth function f� still remains unclear, although empirically their superior 
performance in dealing with outliers has been observed. As mentioned above, this is, in fact, one of the 
most prominent advantages of MCCR estimators over other regression estimators. The main barrier to 
understanding MCCR in the presence of outliers lies in the modeling of outliers in analysis. This is because 
for the time being there exists no distribution independent definition of outlier and more frequently, outliers 
are defined in association with concrete distributions, see e.g., [23,46,1].

The present study aims to address the above three concerns on correntropy based regression, especially 
the concern of understanding MCCR in the presence of outliers. We start with the following motivating 
observation: a very frequently employed technique of generating outliers in robust statistics [57,28,31,29,20], 
machine learning [49,21], as well as many engineering applications [32,34] is as follows

ε ∼ λ1N (μ1, σ2
1) + λ2N (μ2, σ2

2), (4)

where λ1 + λ2 = 1, λ1 � λ2, σ2
1 � σ2

2 , and N (μ1, σ2
1), N (μ2, σ2

2) are two Gaussian distributions with 
mean μ1, μ2 and variance σ2

1, σ2
2 , respectively. In (4), N (μ1, σ2

1) is usually considered as background noise 
while N (μ2, σ2

2) is regarded as the contaminating noise that generates outliers since σ2
2 is far larger than 

σ2
1 . In some cases, other distributions that have heavier tails than Gaussian (such as Cauchy noise) may be 

also employed in (4) as contaminating noise. On the other hand, we notice that both Gaussian noise and 
Cauchy noise belong to the type of symmetric stable noise. These observations remind us to impose the 
mixture of symmetric stable noise assumption on ε and study the performance of MCCR in this case. In 
fact, as we shall see later, mixture of symmetric stable distributions have been frequently employed in many 
engineering applications to model impulsive noise. Another nice property of mixture of symmetric stable 
noise lies in that it can approximate the distribution of any noise arbitrarily well.

With the introduction of mixture of symmetric stable distributions in modeling heavy-tailed noise or 
outliers, in this paper, we make a step forward in understanding correntropy based regression in statistical 
learning. More detailed speaking, concerning the study of correntropy based regression estimators, in this 
work, we make the following contributions:

• We introduce the mixture of symmetric stable distributions to model the noise ε. The family of mixture 
of symmetric stable noise includes the Gaussian noise, the mixture Gaussian noise, the Cauchy noise, 
and many other kinds of mixture noise, and so is capable of modeling heavy-tailed noise and outliers. We 
notice that within the statistical learning framework, we make some first attempts in modeling outliers 
via mixture of symmetric stable distributions.

• Under the mixture of symmetric stable noise assumption, we demonstrate that MCCR estimators can 
learn the unknown truth function f� in an unbiased way in that the population version of fz is exactly 
f�. Recall that f� is the conditional mean function or the conditional median function, and the mixture 
of symmetric stable noise consists of a large family of noise from light-tailed to heavy-tailed. This 
indicates that MCCR could be employed to learn f� after seeing enough observations without resorting 
to the sub-Gaussianity of the noise.

• We establish asymptotic learning rates of type O(n−1) which are comparable with those of least squares 
regression estimators under the sub-Gaussianity noise assumption. As stated above, the mixture of 
symmetric stable noise include Gaussian noise and Cauchy noise as two special cases, and can be used 
to model outliers. Therefore, the present study provides direct answers to the three problems stated 
above. In fact, establishing almost sure convergence rates of type O(n−1) in learning theory without 
appealing to finite variance assumption of the noise may be of independent interest.
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The rest of this paper is organized as follows. In Section 2, we provide the definitions of symmetric 
stable distributions and mixture of symmetric stable distributions and introduce some of their applications. 
Section 3 is concerned with the assessments of correntropy based regression in the presence of mixture of 
symmetric stable noise. The performance of MCCR, in this case, will be studied in this section, and results 
on learning rates of MCCR estimators will be presented here. We will also give some comments on the 
obtained learning rates and the MCCR estimator in this section. The paper is concluded in Section 5.

2. Mixture of symmetric stable distributions and its applications

In this section, we introduce the mixture of symmetric stable distributions and its applications. To this 
end, we shall first introduce the symmetric stable distribution.

Definition 1 (Symmetric stable distribution [47]). A univariate distribution function is symmetric stable if 
its characteristic function takes the following form

φ(t) = exp
{

iμt − γ|t|α
}

, for any t ∈ R,

where −∞ < μ < ∞, γ > 0, 0 < α ≤ 2, and i is the imaginary unit.

More precisely, the symmetric stable distribution defined in Definition 1 is said to be α-stable and sym-
metric about the location μ. As shown in Definition 1, a symmetric stable distribution has three parameters, 
namely, the location parameter μ, the scale parameter γ, and the characteristic exponent α. The character-
istic exponent α is a shape parameter and measures the thickness of the tails of the density function. Two 
typical examples of symmetric stable distributions are Gaussian distribution (α = 2) and Cauchy distribu-
tion (α = 1). A symmetric stable distribution with 0 < α < 2 only admits absolute moments of order less 
than α. Therefore, all symmetric stable distributions do not have finite variance except for the Gaussian 
distribution. For more properties of symmetric stable distributions, we refer to [14,41,47].

When a univariate distribution P consists of different components with each of which a symmetric stable 
distribution and can be expressed as a convex combination of these components, it is called a mixture of 
symmetric stable distributions [38].

Definition 2 (Mixture of symmetric stable distributions). A univariate distribution P with density p is a 
mixture of symmetric stable distributions if it is a convex combination of symmetric stable distributions 
{Pi}K

i=1 with density function {pi}K
i=1 and K a positive integer, i.e., there exists λ1, · · · , λK with λi > 0 for 

i = 1, . . . , K, and 
∑K

i=1 λi = 1, such that

P (t) =
K∑

i=1
λiPi(t), and p(t) =

K∑
i=1

λipi(t), for any t ∈ R.

In Definition 2, λ1, . . . , λK are called the mixing weights and p1, . . . , pK are component densities. It is 
obvious that when K = 1, a mixture of symmetric stable distributions is reduced to a symmetric stable 
distribution. In particular, if p1, . . . , pK are normal densities, then p is a mixture of Gaussian. A nice property 
of the mixture of Gaussian density is that it can approximate any density function to arbitrary accuracy 
with suitable choice of parameters and enough components K [56,38].

Symmetric stable distributions have been drawing continuous attention in the statistics literature [14,
15,12,41,10]. The mixture of symmetric stable distributions, which includes the mixture of Gaussian and 
symmetric stable distributions as special cases, has been extensively applied into many applications. As 
mentioned above, in robust statistics, it has been employed to mimic perturbed or heavy-tailed distributions, 
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see e.g., [29]. In many engineering applications, especially applications in the field of signal processing, image 
processing, and wireless communications, it has been frequently applied to model impulsive noise [50,2,42,
30,35,13,33,6,37,54,45,43] or outliers [3,1].

3. MCCR with mixture of symmetric stable noise

The noise is mixture of symmetric stable noise if its distribution is a mixture of symmetric stable distri-
butions. As stated in the above section, it can be employed to model non-Gaussian noise and outliers. In 
this section, we study MCCR from a statistical learning viewpoint in the presence of mixture of symmetric 
stable noise ε. We start with the introduction of several notations and assumptions.

3.1. Notations and assumptions

We denote the unknown probability distribution over X × Y as ρ and ρX as the marginal distribution of 
ρ over X . For any f ∈ H, the empirical error in (3) is denoted as Eσ

z (f), that is,

Eσ
z (f) = 1

n

n∑
i=1

�σ(yi − f(xi)),

and its population version Eσ(f) is defined as

Eσ(f) =
∫

X ×Y

�σ(y − f(x))dρ.

The distance between f and f� in L2
ρX

is denoted as ‖f − f�‖2
ρ. Besides, for any two quantities a, b, we 

denote a � b if there exists a positive constant c such that a ≤ cb.

Assumption 1 (Mixture of symmetric stable noise). The distribution of the noise ε is a mixture of symmetric 
stable distributions with location parameter 0, i.e., the density pε,x of the noise variable ε for any x ∈ X
takes the following form

pε,x(t) =
K∑

i=1
λipε,x,i(t), for any t ∈ R,

where K is a positive integer, λi > 0 for i = 1, . . . , K, 
∑K

i=1 λi = 1, and pε,x,i is the density function of the 
symmetric stable distribution Pε,x,i that is centered around 0 for i = 1, . . . , K.

The second assumption is on the complexity of H in terms of the �2-empirical covering number N2(H, η), 
see e.g., [65,51,19], which is defined as follows.

Definition 3. Let x = {x1, x2, . . . , xn} ⊂ X n. The �2-empirical covering number of the hypothesis space H, 
which is denoted as N2 (H, η) with radius η > 0, is defined by

N2 (H, η) := sup
n∈N

sup
x∈X n

inf
{

� ∈ N : ∃{fi}�
i=1 ⊂ H such that for each f ∈ H, there exists some

i ∈ {1, 2, . . . , �} with 1
n

n∑
j=1

|f(xj) − fi(xj)|2 ≤ η2
}

.
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Assumption 2 (Complexity Assumption). There exist positive constants 0 < s < 2 and c such that

log N2(H, η) ≤ cη−s, ∀ η > 0.

Throughout this paper, we also assume that there exists a positive constant M such that supf∈H ‖f‖∞ ≤
M , and ‖f�‖∞ ≤ M .

3.2. Unbiasedness of MCCR with mixture of symmetric stable noise

In the presence of mixture of symmetric stable noise, in this part, we will show that MCCR can learn f�

in an unbiased way. This is stated in the sense of the following theorem, which is established by applying 
techniques proposed in [16].

Theorem 1. Suppose that Assumption 1 holds and f� ∈ H. Then we have

f� = arg min
f∈H

Eσ(f),

and for any f ∈ H, it holds that

cσ,γ,α‖f − f�‖2
ρ ≤ Eσ(f) − Eσ(f�) ≤ ‖f − f�‖2

ρ,

where cσ,γ,α is a positive constant that will be given explicitly in the proof.

Proof. From the definitions of the notions, we know that

Eσ(f) − Eσ(f�) = σ2
∫
X

[Fx(f(x) − f�(x)) − Fx(0)]dρX(x),

where Fx : R → R is denoted as

Fx(u) := 1 −
+∞∫

−∞

exp
{

− (t − u)2

σ2

}
pε,x(t)dt, x ∈ X .

From the Taylor’s theorem, we know that

Fx(f(x) − f�(x)) − Fx(0) = F ′
x(0)(f(x) − f�(x)) + F ′′

x (ζx)
2 (f(x) − f�(x))2,

where for any x ∈ X , 0 < ζx < f(x) − f�(x). Due to the symmetry assumption of the noise, for any x ∈ X , 
we have

F ′
x(0) = −2

+∞∫
−∞

exp
(

− t2

σ2

) (
t

σ2

)
pε,x(t)dt = 0,

and

F ′′
x (ζx) = 2

+∞∫
−∞

exp
{

− (t − ζx)2

σ2

} (
σ2 − 2(t − ζx)2

σ4

)
pε,x(t)dt, x ∈ X .
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It is obvious that for any x ∈ X , the following inequality

F ′′
x (u) ≤ 2

σ2

holds uniformly for 0 < u < f(x) − f�(x). Therefore, we have

Eσ(f) − Eσ(f�) = σ2
∫
X

[Fx(f(x) − f�(x)) − Fx(0)]dρX(x)

= σ2

2

∫
X

F ′′
x (ζx)(f(x) − f�(x))2dρX(x)

≤
∫
X

(f(x) − f�(x))2dρX(x).

(5)

On the other hand, with simple computations, we have

Eσ(f) − Eσ(f�) = σ2
∫
X

+∞∫
−∞

[
exp

(
− t2

σ2

)
− exp

(
− (t − [f(x) − f�(x)])2

σ2

)]
pε,x(t)dtdρX(x)

= σ2
∫
X

+∞∫
−∞

[
exp

(
− t2

σ2

)
− exp

(
− (t − [f(x) − f�(x)])2

σ2

)]
pε,x(t)dtdρX(x)

= σ2
∫
X

+∞∫
−∞

[
exp

(
− t2

σ2

)
− exp

(
− (t − ux)2

σ2

)]
pε,x(t)dtdρX(x)

= σ2
∫
X

+∞∫
−∞

[
exp

(
− (t + ux)2

σ2

)
− exp

(
− t2

σ2

)]
pε,x(t)dtdρX(x),

where for any x ∈ X , ux = f(x) − f�(x). From Assumption 1 on the noise and recalling the linearity 
property of the Fourier transform, we have

p̂ε,x(ξ) =
K∑

i=1
λip̂ε,x,i(ξ),

where p̂ε,x is the Fourier transform of pε,x, and p̂ε,x,i is the Fourier transform of pε,x,i, i = 1, . . . , K. Moreover, 
for i = 1, . . . , K, since Pε,x,i is a symmetric stable distribution with the location parameter 0, we know that 
there exist γi > 0 and 0 < αi ≤ 2 such that

p̂ε,x,i(ξ) = e−γi|ξ|αi
.

Applying the Planchel formula, we obtain

Eσ(f) − Eσ(f�) = σ3

2
√

π

∫
X

+∞∫
−∞

exp
(

−σ2ξ2

4

)
p̂ε,x(ξ)

[
1 − eiξux

]
dξdρX(x)

= σ3
√

π

K∑
i=1

λi

∫ +∞∫
exp

(
−σ2ξ2

4

)
p̂ε,x,i(ξ) sin2

(
ξ(f(x) − f�(x))

2

)
dξdρX(x)
X −∞
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= σ3
√

π

∫
X

K∑
i=1

λi

+∞∫
−∞

exp
(

−σ2ξ2

4 − γi|ξ|αi

)
sin2

(
ξ(f(x) − f�(x))

2

)
dξdρX(x),

where the second equality is due to the fact that Eσ(f) − Eσ(f�) is real for any f ∈ H. For any x ∈ X , 
|ux| = |f(x) − f�(x)| ≤ 2M . When |ξ| ≤ π

2M , from Jordan’s inequality, it holds that

sin2
(

ξ(f(x) − f�(x))
2

)
≥ 2ξ2(f(x) − f�(x))2

π2 .

As a result, we come to the following conclusion

Eσ(f) − Eσ(f�) ≥ 2σ3

π5/2

∫
X

K∑
i=1

λi

π
2M∫

− π
2M

ξ2 exp
(

−σ2ξ2

4 − γi|ξ|αi

)
(f(x) − f�(x))2dξdρX(x)

= cσ,γ,α

∫
X

(f(x) − f�(x))2dρX(x),

(6)

where

cσ,γ,α = 2σ3

π5/2

K∑
i=1

λi

π
2M∫

− π
2M

ξ2 exp
(

−σ2ξ2

4 − γi|ξ|αi

)
dξ. (7)

The positiveness of cσ,γ,α implies that for any f ∈ H, we have Eσ(f) ≥ Eσ(f�). That is,

f� = arg min
f∈H

Eσ(f).

To prove the second assertion, we combine inequalities (5) and (6), and obtain

cσ,γ,α‖f − f�‖2
ρ ≤ Eσ(f) − Eσ(f�) ≤ ‖f − f�‖2

ρ,

where cσ,γ,α is a positive constant given in (7). This completes the proof of Theorem 1. �
Theorem 1 states that in the presence of mixture of symmetric stable noise, the population version of 

the MCCR estimator fz is exactly the underlying unknown truth function f� as long as f� belongs to 
H. Therefore, in this sense, fz can be regarded as an unbiased estimator of f�. Another implication of 
Theorem 1 is that under the mixture of symmetric stable noise assumption, the excess risk of MCCR can 
be upper and lower bounded by the L2

ρX
-distance between the MCCR estimator fz and the unknown truth 

f�. As we shall see later, this leads to fast convergence rates of the MCCR estimator fz to f�.

3.3. Performance of MCCR with mixture of symmetric stable noise

We are now in a position to evaluate the learning performance of MCCR in the presence of mixture of 
symmetric stable noise by establishing convergence rates of ‖fz − f�‖2

ρ.

Theorem 2. Suppose that Assumption 1 and Complexity Assumption with s > 0 hold. Let fz be produced by 
(3) and f� ∈ H. For any 0 < δ < 1, with confidence 1 − δ, it holds that

‖fz − f�‖2
ρ � log(1/δ)n− 2

2+s .
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When functions in H are sufficiently smooth, the index s could be arbitrarily small. Therefore, it is 
immediate to see that the convergence rates established in Theorem 2 are asymptotically of type O(n−1). 
Recall that in Theorem 2, the noise ε is only assumed to be a mixture of symmetric stable noise which 
include the mixture Gaussian and the Cauchy noise, and can be applied to model outliers. It is interesting 
to see that in this case the MCCR estimator fz can learn the conditional mean function or the conditional 
median function f� well. This, in fact, explains the merits of MCCR in dealing with heavy-tailed noise or 
outliers. Moreover, as far as we are aware, within the statistical learning framework, we present some first 
results on the optimal convergence rates of regression estimator without imposing finite-variance or even 
finite first-order moment conditions on the noise.

To prove Theorem 2, we need the following lemma established in [65].

Lemma 1. Let F be a class of measurable functions on Z. Assume that there are constants B, c > 0 and 
θ ∈ [0, 1] such that ‖f‖∞ ≤ B and Ef2 ≤ c(Ef)θ for every f ∈ F . If for some a > 0 and s ∈ (0, 2),

log N2 (F , η) ≤ aη−s, ∀ η > 0,

then there exists a constant αp depending only on p such that for any t > 0, with probability at least 1 − e−t, 
there holds

Ef − 1
m

m∑
i=1

f(zi) ≤ 1
2γ1−θ (Ef)θ + αpγ + 2

(
ct

m

) 1
2−θ

+ 18Bt

m
, ∀ f ∈ F ,

where

γ := max
{

c
2−s

4−2θ+sθ

( a

m

) 2
4−2θ+sθ

, B
2−s
2+s

( a

m

) 2
2+s

}
.

Proof of Theorem 2. To prove Theorem 2, we apply Lemma 1 to the function set FH defined below

FH =
{

g
∣∣∣ g(z) = −σ2 exp

{
−(y − f(x))2/σ2}

+ σ2 exp
{

−(y − f�(x))2/σ2}
, f ∈ H, z ∈ Z

}
.

We first verify conditions in Lemma 1. From the definition of FH, for any g ∈ FH, we have

‖g‖∞ ≤ σ2 + σ2 = 2σ2,

and the following Bernstein condition holds

Eg2 =
∫
Z

(
−σ2 exp

{
− (y − f(x))2

σ2

}
+ σ2 exp

{
− (y − f�(x))2

σ2

})2

dρ

� σ2
∫
Z

((y − f(x)) − (y − f�(x)))2 dρ

= σ2
∫
X

(f(x) − f�(x))2dρ � Eg,

(8)

where the first inequality is a consequence of the mean value theorem and the boundedness of ‖h′‖ with 
h(t) = −σ2 exp(−t2/σ2), t ∈ R, and the second inequality is due to Theorem 1. On the other hand, for any 
g1, g2 ∈ FH, there exist f1, f2 ∈ H such that



JID:YACHA AID:1338 /COR [m3L; v1.261; Prn:5/09/2019; 15:39] P.11 (1-16)
Y. Feng, Y. Ying / Appl. Comput. Harmon. Anal. ••• (••••) •••–••• 11
g1(z) = −σ2 exp
{

−(y − f1(x))2/σ2}
+ σ2 exp

{
−(y − f�(x))2/σ2}

,

and

g2(z) = −σ2 exp
{

−(y − f2(x))2/σ2}
+ σ2 exp

{
−(y − f�(x))2/σ2}

.

By applying the mean value theorem and noticing again the boundedness of ‖h′‖∞, we have

‖g1 − g2‖∞ ≤ σ2‖f1 − f2‖∞.

Under the Complexity Assumption with 0 < s < 2, the following relation between the �2-empirical covering 
numbers of FH and H holds

log N2(FH, η) ≤ log N2

(
H, η/σ2

)
� η−s.

Applying Lemma 1 to the function set FH, with simple computations, we come to the conclusion that for 
any 0 < δ < 1 with confidence 1 − δ, there holds

[Eσ(f) − Eσ(f�)] − [Eσ
z (f) − Eσ

z (f�)] − 1
2 [Eσ(f) − Eσ(f�)] � log(1/δ)n− 2

2+s .

Noticing that Eσ
z (fz) ≤ Eσ

z (f�), we have

1
2 [Eσ(fz) − Eσ(f�)] ≤ [Eσ(fz) − Eσ(f�)] − [Eσ

z (fz) − Eσ
z (f�)] − 1

2 [Eσ(fz) − Eσ(f�)] .

Therefore, for any 0 < δ < 1 with confidence 1 − δ, it holds that

‖fz − f�‖2
ρ � log(1/δ)n− 2

2+s .

This completes the proof of Theorem 2. �
Remark 1. From the proof of Theorem 2, we see that the boundedness of the loss function �σ and the Bern-
stein condition (8) play a crucial role in establishing fast convergence rates of fz. The Bernstein condition 
holds because of the Lipschitz continuity of the loss function �σ on R and the fact that the L2

ρX
-distance 

between fz and f� can be upper bounded by the excess risk Eσ(fz) −Eσ(f�), i.e., conclusions in Theorem 1.

3.4. Comments on MCCR with mixture of symmetric stable noise

We now give two remarks on the performance of the MCCR estimator fz in the presence of mixture of 
symmetric stable noise by comparing with that of the least squares estimator.

The first remark is on the convergence rates of the two regression estimators. As shown in Theorem 2, 
in the presence of mixture of symmetric stable noise and when f� ∈ H, fz can learn the unknown truth 
function f� well. The established learning rates are of type O(n− 2

2+s ) which are optimal in the sense that 
they are asymptotically of type O(n−1). Moreover, they are comparable with that of least squares estimators 
[64,11].

Our second remark is on the conditions required to established convergence rates for the two regression 
schemes. Recalling that for least squares regression, to establish learning theory type convergence rates, the 
response variable (and consequently the noise, under the data-generating model (1)) is frequently assumed 
to be uniformly bounded [11,55], which is usually not the case in practice. In fact, even in the presence of 
Gaussian noise, to establish learning theory type convergence rates for least squares regression, it is much 
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involved due to the unboundedness of the response variable, in which case many conventional learning theory 
arguments and tools are not applicable. Recently, some efforts have been made to relax this assumption 
[59,19,39]. As far as we are aware, convergence rates for least squares regression estimators cannot be 
established without resorting to the finite-variance condition. When moving our attention to correntropy 
based regression, as shown above, in the presence of mixture of symmetric stable noise, optimal learning rates 
of MCCR estimator are established. Notice that symmetric stable noise with the characteristic exponent 
parameter 0 < α < 2 has infinite variance or even first-order moment. Moreover, as stated above, it can 
approximate any density function arbitrarily well with properly chosen K and consequently can be applied 
to model outliers. In this sense, our study presented here explains the capability of MCCR estimators in 
dealing with outliers.

4. Simulations

In this section, we provide simulations (1) to validate the feasibility of modeling outliers by using mixture 
of symmetric stable distributions and (2) to justify the robustness of MCCR to outliers by comparing with 
that of Huber regression estimators which are regarded as outlier robust.

Concerning the data generating model Y = f�(X) + ε, we set the truth function f� as the following sinc 
function

f�(x) = sin(πx)/(πx), x ∈ [−4, 4],

as done in [58,53]. In our simulation studies, we aim to learn f� from observations that are contaminated 
by outliers. In particular, the outliers are generated by mixture of symmetric stable noise as proposed in 
this study. We consider the following two types of noise that belong to this category:

• Noise I: ε ∼ 0.9N(0, 0.052) + 0.1N(0, 0.52)
• Noise II: ε ∼ 0.9N(0, 0.052) + 0.1Cauchy(0, 1)

For Noise I, it is drawn from the mixture of two Gaussian distributions where the background noise is drawn 
from N(0, 0.052) and the contaminating noise is drawn from N(0, 0.52) to generate outliers. For Noise II, 
it is drawn from the mixture of Gaussian and Cauchy distributions where the Gaussian noise N(0, 0.052)
serves as background noise and outliers are generated by the contaminating noise Cauchy(0, 1), i.e., Cauchy 
noise with the location parameter 0 and the scale parameter 1.

We set up our experiment by following that of [18], i.e., the hypothesis space H is chosen as a subset 
of a reproducing kernel Hilbert space which is selected automatically by means of a regularized empirical 
risk minimization, see formula (21) in [18]. A Gaussian kernel is utilized as the reproducing kernel. 200
samples are drawn as training data and 400 samples are drawn as test data. The bandwidth parameter, the 
regularization parameter, and the scale parameter in Huber’s loss are tuned via a five-fold cross validation. 
The scale parameter σ in the loss function �σ (2) is set to 0.01.

Experimental results on the generation of outliers and the learned curves are plotted in Figs. 1 and 2. 
In Fig. 1, the black curves stand for the curve of the truth function f�. The blue dots from the two panels 
stand for samples that are contaminated by the background noise of Noise I and Noise II, respectively. The 
red crosses are samples contaminated by contaminating noise of the two noise types, respectively, which are 
regarded as outliers. In Fig. 2, the truth curve (black solid line) as well as the curves learned from MCCR 
(dashed red curve) and from Huber regression (dashed blue curve) are plotted when the noise are of type I 
and type II, respectively. Outliers are also marked in Fig. 2 for illustration.
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Fig. 1. Sinc function (black solid curves) and training samples. The samples with red crosses are regarded as outliers. (top) The 
observations are contaminated by mixture of Gaussian noise. (bottom) The observations are contaminated by mixture of Gaussian 
and Cauchy noise. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

From Fig. 1, it is easy to see that outliers are indeed generated when the noise are drawn from mixture of 
symmetric stable distributions. According to Fig. 2, MCCR is robust to outliers and performs better than 
Huber regression in the presence of outliers.

5. Conclusion

In this paper, we studied the correntropy based regression within the statistical learning framework 
by introducing the mixture of symmetric stable noise which subsume Gaussian noise, Cauchy noise, and 
mixture of Gaussian noise. In this study, it was introduced to model heavy-tailed noise and outliers, to which 
the correntropy based regression estimators have been empirically verified to be resistant. In our study, we 
showed that the empirical risk minimization scheme based on the correntropy induced loss can learn the 
underlying truth function sufficiently well while allowing the noise to be the mixture of symmetric stable 
noise. In particular, learning theory analysis was conducted and the learning performance of MCCR with 
mixture of symmetric stable noise was evaluated. It is interesting to see that, in this case, asymptotically 
optimal learning rates of type O(n−1) can be developed, which are comparable with that of least squares 
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Fig. 2. Outliers (red crosses), sinc function (black solid curves) and its estimators from MCCR and Huber regression (MCCR: red 
dashed curve; Huber: blue dashed curve). (top) The observations are contaminated by mixture of Gaussian noise. (bottom) The 
observations are contaminated by mixture of Gaussian and Cauchy noise.

regression under bounded noise assumption. These theoretical findings successfully explain the efficiency 
and effectiveness of correntropy based regression estimators in the presence of heavy-tailed noise or outliers.
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